
48

qITATION PAGE "We14cS AD-A264 839 ...
ADA264T DATE P REPORT TYPE ANC DATES COV'RED

FITAL 1 Iar 89 -30 Apr 92
4 TITLE AND SUBTITLE .. S :UNDtNIG NUMBERS
"DESIGN ISSUES FOR HIGH PERFORMANCE ENGINEERING
INFORMATION SYSTEMS" (U) 61 102F

2304/A2
rs. " 1 CK Roussopoulos, Timos Sellis, Leo Mark and

Christos Faloutsos

7 PERFORMING ORGANIZATION NA'' %" U; u11 8, PERFORWNG ORGANZATCNR
University of Maryland REPERORTNMBE RGAiAC

College Park MD 20742 MAYl 4 1993 AFOSRTh

9. SPONSORING'MONITORING AGENC- %• " . RESS(ES) 10. SPONSORING MONITORiNG
AGENCY REPORT NUMBER

110 Duncan Ave Suite B115
Boiling AFB DC 20332-0001 AFOSR-89-0303

11. SUPPLEMENTARY NOTES

93-10747
12a DISTRIBUTION AVAILABILITY STAE'0i0A N

Approved for Public Release;
Distribution unlimited UL

93 5 13 044
13. ABSTRACT (Maximum 200 words)

;It is increasingly being recognized that an Engineering Information
'System will be the fundamental component of any design and
manufacturing system in the future and that all components in such a
system have to be engineered around the management and control of
information. Commercially available database systems do not meet the
information and processing needs of design and manufacturing,
environments, consequently, extensions of database systems are
necessary to realize Engineering Information Systems. These systems
will support multimedia databases of significant size and complexity,
and, therefore, one of the most important issues is performance.
Addressed in this project were the computational and architectural
aspects of EIS and rule managment techniques for maintaining
consistency. The studies produced promising models and solutions.

14 SUBJECT TERMS 15. NUMBER OF PAGES

20
"16, PRICE CODE

1?. SECURITY CLASSIFICATION 18 SECURITY C2ASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED 1UNCLASS IFED SAR

Final Report - March 1992

Project Title: Design Issues for High Performance Engineering Information Systems

Grant Number AFOSR-89-0303

Principal Investigator: Nick Roussopoulos

Co-Principal Investigators: Timos Sellis, Leo Mark, Chrisros Faloursos

Department of Computer Science, University of Maryland

College Park, MD 20742

ACCe-ioi: For

N"TtS CRA&I

S011C TAb -

J ustifif-alvoI

By

UiAt'•buton l

Avai••blity Codes

Avdil aridl or

IDI

Executive Summary

It is increasingly being recognized that an Engineering Information Sys::rn will be the fundamental
component of any design and manufacturing system in the future and that all components in such a sys-
tem have to be engineered around the management and control of information. Commercially available
database systems do not meet the information and processing needs of design aind manufacturing environ-
ments; consequently, extensions of database systems are necessary to realize Engineering Information
Systems. These systems will support multimedia databases of significant size and complexity, and, there-
fore, one of the most important issues is performance.

In this project, we addressed the computational and architectural aspects of Engineering Information
Systems and rule management techniques for maintaining consistency. Our studies produced promising
models and solutions. These are summarized as follows:

"* Incremiental computation models are needed to achieve the required performance in client-server
architectures, time and version management, rule exe-ution, and image retrieval.

"* Client-server architectures are needed to provide access to multiple heterogeneous and autonomous
databases while maintaining high availability and low communication overhead;

• Efficient 3rganization, management and execution of large rule bases are needed to make the
Engineering Information Systems active and to maintain consistency amongst the voluminous and
overlapping databases.

0 Multidimentional indexing is needed for efficient retrieval of images, text, and complex engineering
objects.

This report reviews the most important results of our research on Engineering Information Systems
funded through this AFOSR contract and a companion contract with the National Science Foundation.
The results have been published in refereed journals, refereed conferences, and University of Maryland
Technical Reports, and Theses. These are divided as follows: II journal publications, 4 submissions for
publication, 7 conference publications, 8 Technical Reports, 4 PhD dissertations and 8 Masters Theses.

Final Report Grant# AFOSR-89-0303 Page I

1. PART A: Motivation and Requirements

Part A of this report motivates the research and derives the requirements for High Performance
Engineering Information Systems.

1.1. Engineering Information Systems

Up until now, data has been treated in a passive way, namely collected and stored during the opera-

tion and analyzed offline. This passive data collection is only good for post-mortem analysis, not for con-

trolling and driving the operation. It is, however, increasingly being recognized that the lift-off of the

space shuttle is not just the physical movement per se, nor the static snapshot of the data at any time

inst•no'. but the information abou: all the evcnz, s p c.-ding the lift-off, the wonirolled decs4o* i,1 d,,IA divc
it, and the effects of those decisions on its future states. The physical movement is the result of a set of

controlled actions, and is as important, or unimportant if you like, as the rotating movement of the wheels

of your car during your search for the right exit off a highway in New York City.

It is becoming better understood that Engineering Information Systems (EIS) will be the most
important component in the design and operation of complex systems, and that all other components of

these systems have to be engineered around the management and control of information. Only the reali-
zation of the importance of information engineering and the appropriate budgeting of an Engineering

Information System in the cost of a system will bring us into the information age and give us a chance to
contend with our far-east competitors in high-technology design and manufacturing.

Recently, there has been considerable interest in providing a framework for information sharing and

exchange in engineering environments. Engineering Information Systems (EIS) were, and are, the focus

of several government sponsored research projects. These projects try to consolidate and integrate the

engineering support environments that have been and are being developed to support planning, design

automation, manufacturing, resource management, etc. Along this direction, there has already been some

work in extending existing business-tailored database management systems to accommodate engineering
applications. In particular, relational DBMSs storing their factual data in relations (or tables) have been

used in support of Computer Aided Design (CAD), Computer Integrated Manufacturing (CIM), and
Artificial Intelligence and Expert Systems. The main difference between the business applications and
EISs lies in the kind of information the applications use. Business applications mainly deal with large

volumes of structured data and have well understood azcess patterns; engineering applications usually

involve sophisticated control mechanisms, deal with both structured and unstructured data, but have

rather unpredictable access patterns. Therefore, an EIS should be able to support explicit representations
of control information in addition to factual information.

Figure 1 shows an example of an EIS supporting a Computer Integrated Manufacturing system
(CIM). The EIS integrates several subsystems, one for Manufacturing and Resource Planning (MRP), one

for Computer-Aided Design (CAD), and one for Computer-Aided Process Planning (CAPP). The MRP sys-

tem contains a variety of information, especially the bill of material (B. o. x.) describing part explosion

and the PART information containing the individual part descriptions including version information. The
CAD system contains DESIGNs and DRAWINGs in various versions. The CAPP system contains process

PLANs, ROUTING information, etc.

Final Report Grant# AFOSR-89-0303 Page 1

Our example concentrates on the MRP and CAD systems. There are a number of situations where
deductive rules are needed for retrieval of complex data stored in two or more of the subsystems. For

example, the parn-explosion (transitive closure) of the B.o.M. is useful for both the manufacturing and
resource planning subsystems. In addition, there is a considerable amount of redundancy and dependency
between and within the data stored by the two !,ystems. Active rules are needed to specify how updates in
one subsystem propagate to the others (change propagation). For example, data entry made in the DRAW-

ING relation as a result of storing a graphical DESIGN should also be done in the s.o.M. and PART
relations. Similarly, modifications in the DRAWING relation are made as a result of finalizing a DESIGN;
entries may not be accepted into the DRAWING relation if parts used in a DESIGN are not present in the
PART relation. Such dependencies between the redundant data require the use of mechanisms to maintain
consistency, support data exchange, and enforce change propagation between the two systems.

1.2. Why Use Databases in EISs?

It is clear that an EIS will contain large volumes of data and, therefore, database technology is
needed for providing data sharing, consistency apd integrity, recovery, archival, access control, and all
the other benefits of a controlled environment. Furthermore, a typical EIS environment is naturally distri-
buted among a large number of tools and special purpose workstations, such as schematic analyzers,

graphics editors, simulators, database management systems, etc. Most of the interactions will originate
from a workstation or a tool tailored to some specific task. For example, a graphics workstation may be
used in a CAD system for editing a schematic layout and a faster processor or a super computer for run-
ning its logic simulations. Distributed databases have dealt with distributed concurrency control proto-
cols and the associated issues of data consistency and integrity. Therefore, EISs must utilize the existing
database technology.

1.3. Database Challenges in ETS

Database technology, however, was developed to help business data processing applications which
maintain static snapshots of the data. The dynamic aspects of an EIS environment, the evolution of data
and events, and the heterogeneity of data, hardware, and software, present the biggest database challenges
in EIS.

It is highly unlikely that all the functionality of special purpose processors and tools that currently
exist on the market or those which will be developed in the near future can be provided by a single host.
It is also highly unlikely, that all data will be integrated in a super-database repository accessible by
everyone dealing with an EIS. Not mentioning the immeasurable political problems inhibiting such an
integration, there are technological problems as well. First, the variety and diversity of data and software
for EIS processing makes integration a utopia. Second, the cost of such a solution, even if it were techni-
cally feasible, would be astronomical. Third, experience has shown that cost effective solutions rely
mainly on simple systems rather than on monolithic giants.

For all these reasons, the majority of the database community is leaning towards the idea of "intero-
perability" of autonomous and heterogeneous databases, as opposed to the dream of "total data integra-
tion." However, heterogeneous database interoperability implies enormous awrounts of data translation,

data transmission, environment switching overhead, cooperative software, and distributed control. The

Final Report Grant# AFOSR-89-0303 Page 2

technology for achieving these is in its infancy. New computation models and architectures are necessary

to achieve the required performance. Similarly, new rule specification models for controlling the evolu-

tion of these autonomous databases are needed. These are the problems with which we have dealt in this

project.

1.4. Incremental Computation Models

Conventional computation models are based on re-execution. That is, all computation is repeated

each and every time results are needed. Nothing is retained from previous executions and, many times,

even optimization of the computation is repeated. However, a lot of the cost can be saved by using more
intelligent computation models which retain some of their results, or access paths to these results, in per-

sistent storage for reuse. Our research in the last several years has centered around a new concept of
incremental computation models which utilize cached results or access paths. These results are realized

again by applying the computation on the input differentials as opposed to re-executing the computation
on the whole and almost unchanged input. This concept is illustrated in Figure 2 where a "cross-
reference" of the two data files R and S is computed only once from u-'. whole R and S files, and, main-

tained thereafter incrementally using only the differential files 5R and SS.

Incremental computation is performed on demand or periodically (using a lazy evaluation strategy)

on small input increments. The cost of computing is amortized over the life-cycle of the computed infor-
mation, a concept that is absolutely orthogonal to the re-execution of transient and non-persistent

software we have been used to. Because computation is done on increments, performance is improved by

several orders of magnitude.

Incremental computation models are the foundation of the research done in this project. The fol-

lowing subsections are all based on incremental computation models.

1.5. Enhanced Workstation Client-Server Database Architectures

Client-Server architectures originated in engineering application environments where data is mostly

processed in powerful workstations with CAD/CAM or other special purpose software, while centralized

repositories with check-in and check-out protocols are predominantly used for maintaining data con-
sistency. These protocols were developed to work at the file level and, the clients could not submit

queries or updates to these files on the servers. On the other hand, database Client-Server architectures

were limited to providing query capability for the clients, but no update propagation protocols for staging

the data. The main reason for this was the difficulty with the proprietary formats of the database vendors

and their tendency to keep their system architectures closed.

After studying these two types of architectures, we proposed, designed, built and evaluated an

Enhanced Client-Server (ECS) architecture which combines the features of both. First, clients have been

enhanced to run from a workstation which offers query processing and local disks for data staging.

Second, we applied incremental update propagation algorithms for maintaining the staged data consistent.

Finally, we built incremental access methods for several commercial DBMSs to demonstrate the concept

of interoperability. This architecture is depicted in Figure 3 with three commercial DBMSs and a number
of workstation clients.

Final Report Grant# AFOSR-89-0303 Page 3

In the last year of this project. we designed and ran a set of simulation packages to evaluate the per-

formance of three different Client-Server architectures. The simulations showed that a) the ECS architec-

ture is superior in performance due to the utilization of the local disks which permit parallel access to the

data and the incremental update propagation; Figure 4(a) illustrates the speed-up obtained in total transac-

tion throughput over conventional Clicnt-Server architectures, b) the ECS architecture is scalable and the

only limiting factor in scaling up is the serialization of the updates that need to be synchronized. How-

ever, even in update intensive situations, the performance is at least an order of magnitude higher than the

nearest competitor, and for relatively static databases, several orders of magnitude better. Figure 4(b)

illustrates the scalability of the architectures with runs of up to 200 workstation clients attached to a sin-

gle server. This performance cannot be replicated even in a multimillion super database server.

1.6. Incremental and Decremental Time and Version Management

A conventional database maintains only the current state of the of the modeled world. A transaction

time database maintains not only the current state, but also all previous states of the world; see Figure 5.

Efficient management of such temporal data that accumulates to enormous volumes is essential in provid-

ing version management in an EIS. We developed incremental and decremental computation models, and

combined them with standard query optimization techniques to achieve efficient access to temporal data.

In addition, we developed a query language that supports advanced queries on change behavior in tem-

poral data. These two provide a foundation for monitoring the evolution of versions.

In order to support the above capabilities, we extended the databases to include a backlog which

stores a complete history of time-stamped change requests. Previous states of a relation are computed by

time-slicing its backlog and result in cached access paths; see Figure 6. A time-slice, R(t), is computed

incrementally from the closest cached time-slice, R(tY), where ty<t or decrementally from the closest

cached time-slice, R(t.), where t<tx, whichever is more efficient; see Figure 7.

In addition to using the backlogs for incremental and decremental computation of database states,

the backlogs themselves can be made the subjects of queries. This allows new types of queries on data-

base change behavior, especially important in E[Ss. For example, if component types XIX 2,....Xn of an

object X are replaced when they fail to function properly and these replacements are recorded in the back-
log, then the following questions can be answered by queries on the backlog:

- When was the most recent failure of a component type Xi of object X?

- Which component t-/pe Xi of object X has the highest failure rate?

- Does any component type Xi of object X exhibit unusual failure behavior?

1.7. Active Rule Bases

Due to the large number of dependencies between redundant data in an EIS, an active rule subsys-

tem is needed to maintain data consistency, support data exchange, and enforce change propagation

between systems. Because of the complexity of an EIS environment, the rule subsystem must support a
very large number of rules which themselves need be stored in a rule base. This rule base must itself be

efficiently organized and accessed by the EIS.

Final Report Grant# AFOSR-89-0303 Page 4

Although rules can be written in any programming language, such an approach would neither allow
any efficient retrieval of the rules to be fired in a given event, nor any discovery of rule-to-rule negative
side-effects. To accommodate these requirements, we have developed a powerful specification language
for engineeting rules. This language can be used to specify Update Dependencies between data. An
example of rule specification is given in Figure 8. The rule for deleting a PART has two alternatives. If
the PART is in stock (QTY > 0), then the deletion is rejected because we want to keep the information
about all parts that we have in stock. On the other hand, if the PART is not in stock (QTY = 0), then
information about it is first deleted from the STOCK relation and then removed from the PART relation.
Similarly, insertion in the BOM (Bills of Material) relation is only accepted if no cycles are discovered in
the design. Furthermore, an insertion of a PART information must be accompanied by an insertion in the
BoM relation.

The Update Dependency Language supports a wide variety of applications such as, walk-through
guidance control systems, cause-effect systems, statistical information gathering. knowledge acquisition,
database integrity enforcement, database view updates, policy enforcement, and production control. The
language differs from other formalism for specifying database integrity because the designer uses it to
specify the correct evolution of the database rather than the valid states of the database. This formalism
has been successfully used in a number of applications (e.g., in the functional specification and imple-
mentation of an integrated CAD/CAPP/MRP system).

A rule succeeds when one of the right-hand-sides of the rule succeeds. A right-hand-side succeeds
when its condition evaluates to true and all the implied rules and primitive operations succeed. To support
the efficient execution of rules as an integral part of an EIS, we have developed new search and locking
strategies for the Update Dependency Language.

1.8. Images, Rules and Text

The data types of commercial DBMSs are all alphanumeric. These systems do not adequately sup-
port other varieties of data types used in EISs, such as images, drawings, documents, and rules. Figure 9
shows several of these types as laid on a two-dimensional space: VLSI drawings, cartographic data, data
correlation charts, and rule indexing. In each of these cases, the goal is to find all objects that are con-
tained a two-dimensional window. Extending the search space to two or higher dimensions increases
search complexity and makes queries extremely slow. In order to efficiently retrieve such data we use R-
trees.

R-trees are based on the most popular one-dimensional access method, called B-trees, but are capa-
ble of indexing multidimensional space. Their most frequent application is in two-dimensional space
where they were introduced for searching VLSI designs. In the past several years we have improved the
performance of R-trees by providing fine-tuning techniques for space compaction and more effective util

ization for a variety of spatial objects such as points, line segments, regions, and polygons.

Although spatial access methods are essential in EIS enviropments, they have not been extensively
utilized because a) they require data file reorganization and reformatting so that these methods can be
applied, and b) they cannot be incorporated with neither existing commercial systems which are totally
closed, nor with in-house systems which are very hard to extend. Reorganizing existing data is totally

Final Report Grant# AFOSR-89-0303 Page 5

impractical, not solely because of the high conversion cost, but mainly because duplication of data leads
to inconsistencies.

Our approach in dealing with this problem is similar to that of interoperability of database systems.
We treat spatial data the same way as other data, that is, it remains stored in its original format and struc-
tures in a database server, typically a commercial DBMS, while access methods operate as an add-on
facility. This requires no modification to the host database server.

Documents, manuals, and forms are part of an EIS. For keyword-based retrieval of text data, ,4e
have experimented with signaturefiles. These are "fingerprints" of stored documents at about 10% of the
size of the documents. Therefore, searching for all documents containing some keywords involves
searching through the signature file for the fingerprints of qualifying documents. Because of the small
size of the signature file, the search is very fast.

Images and text data add an order of magnitude of storage requirements and complexity. Therefore,
such databases can only be stored at the database servers and remotely accessed from the workstation.
However, continuous access of remote data servers is very slow, especially when one needs to do simul-
taneous retrieval from several images or keep switching from one to the other. To alleviate the speed
problem of remote access, we use the cache techniques developed for structure databases and incremental
methods for updating outdated data. Some preliminary simulations have shown that the local area net-
work speed must be increased in order to cope with the amounts of data transfer when this involves
images.

1.9. Conclusion

Our research effort during this project has focused on several areas all based on the concepts of
incremental computation models. We applied the incremental models to achieve the performance
required in supporting the information needs of a complex engineering environment, such as data staging,
version support, update propagation, rule management, etc. Our approach in dealing with heterogeneity
is that of interoperability, an approach that is accepted as the only viable solution, and we feel that we
have produced a foundation for its implementation.

Final Report Grant# AFOSR-89-0303 Page 6

W ~Figure 2. Incremnental Computation from cached views and
differential files

Figure 1. An Engineering Information System

oa.m.a, m-

5--

Figure 4. ECS Architecture Throughput and Scalability.
Figure 3. ADMS- Client-Server Architecture

Final Report Grazn# AFOSR-89-0303 Page 7

- PART(PART#:I.NTEGER, NAME:STRING, LOXIv: L'NTT)

EJE IZE J±I EII I±2BOM(PART:.I-NTEGER, SUBlPART#: INTEGER)

rf ~ STOCK (PART#:lN'TEG ER, QTYlNTVG ER)

CONTAL]NS(PART#=P. SL!BPARTN=SP)
__,BOM(PART#=P. SUBPART#=SP).

Figure 5. Conventional DBs vs. Transaction Time D13s -4 BOM(PARTE#=P.SUBPART#=X) and
CONTAINS(PART #=X.S UBPART4=S P',

delete PART(PART#=P)
_______________________________ -* PART(PART#=P) and

STOCK(PART#=P. QTY=Q) and Q,4.
write("parts in stoc>; no deletions made").

-4 PART(PART#=P) and

STOCK(PART#=P. QTY=Q) and Q-{),
delete STOCK(PART**=P).
remove PART(PART#=P).

Figure 6. Incremental computation of time-slices.

insert BOM(PART#~=P, SUBPART#ý_SP)
-~CONTAINS(PART#=SP. SUBEPART#=PX,

write("cycle in part design").
__4 _CONTALNS(PART#i=SP. SUBPART#=P)

r and -PART(PART#=P),111] insert PART(PART#=P),
adBOM(PART#=P, SUBPART#=SP).

Figure 8. Update Dependencies controlling database updates

Figure 7. Differential Computation =Incremental Computa-
dion + Decremental Computation.

Final Report Grant# AFOSR-89-0303 Page 8

0 o

0 0

Figure 9. Other EIS Data Typaes

Final Report Grant# AFOSR-89-0303 Page 9

2. PART B: Detailed Research & Results

This part of the report discusses the details of the contacted research and the obtained results. The published results are

cited in this section.

2.1. Summary of Conducted Research

We proposed an effective way of building High Performance Engineering Information Systems based on Incremental

Computation Models (ICMs). These models utilize results of previous computations stored in persistent cache structures by

merging them with new results obtained from computations performed on the ncremental changes of the database. Because

computation is performed on small increments rather than the whole database, ICMs achieve performances that are far beyond

the reach of ordinary systems.

During the three and a half years of the award, we have investigated a number of design issues for high performance

engineering information systems. The major results of our investigation were obtained in the areas of architecture of engineer-

ing information systems, performance of incremental computation models and pipeline joins, time and version management, rule

representation and performance, spatial indexing, and representation and retrieval of complex objects in engineering applica-

tions. The research has been very successful in all the proposed areas. In addition to the research, the companion development

of our prototype is fairly complete- a demonstration of it was given at the SIGMOD 1990 conference. The prototype provides us

with a testbed for experimenting and verifying the theoretical results.

In the follov'ing sections, we briefly describe the results published in each of these areas and lists the publications directly

resulted from this grant. In total, there were 43 publications, 16 Journal articles, 7 conferences papers, I book chapter and 9

Technical Reports. Copies of these publications are available upon request.

2.2. Architectural Issue-:

We have investigated two different architectures, a tightly coupled mainframe-workstation architecture [IRMSF91] and a

loosely coupled multidatabase architecture [LMR91].

The mainframe-workstation architecture presented in [RMSF91] is bosed on incremental computation models. The

results of queries originating from a workstation are materialized and incrementally maintained on the workstation. The archi-

tecture provides distributed functionality while ensuring high availability and low communication overhead. Explicit control of
meta-knowledge is provided to support extendibility and evolution of engineering data. High levels of knowledge and activity

are supported by a a large rule base. Incremental computation models combined with advanced indexing and storage strategies

are used to achieve high performance. Gateways to multiple relational databases and to a network database are currently under

investigation.

The multidatabase system architecture presented in [LMR91] integrates multiple independently created and managed

heterogeneous databases. Access is achieved without a global schema integration and each database preserves its autonomy. A
formalism for the specification and enforcement of deductive and operative rules ,.'ves the system a high level of knowledge and

activity and allows explicit control of interoperability in the system.

2.3. Performance Issues

We have been studying Incremental Computation Models to achieve high performance in distributed and multi-processor
nrchitectures. The results of our research on Multi-Site Database Access and Management, and Distributed and Multiprocessor

Query Processing are presented in this subsection.

Final Report Grant# AFOSR-89-0303 Page 10

Incremental Access Methods in Relational Databases

We defined ViewCache which is a stored collection of pointers pointing to records of underlying relations needed to
materialize a view. Then on top of it we developed an Incremental Access Method (JAM) [R911 that amortizes the maintenance

cost of ViewCaches over a long time period or indefinitely. Amortization is based on deferred and other upi~ate propagation

strategies. A deferred update strategy allows a ViewCache to remain outdated until a query needs to selectively or exhaustively
materialize the view. At that point, an incremental update of the ViewCache is performed. The [R91] paper dcfines a set of con-

ditions under which incremental access to the ViewCache is cost-effective. The decision criteria are based on some dynamically
maintained cost parameters which provide accurate information but require inexpensive bookkeeping.

The IAM capitalizes on the ViewCache storage organization for performing the update and the materialization of the
ViewCaches in an interleaved mode using one--pass algorithms. Compared to the standard technique for supporting views that

requires reexecution of the definition of the view, the IAM offers significant performance advantages. We will show that under
favorable conditions, .aost of which depend on the size of the incremental update logs between consecutive accesses of the
views, the incremental access method outperforms query modification. Performance gains are higher for multilevel ViewCaches

because all the I/O and CPU for handling intermediate results is avoided.

Incremental Multi-Site Database Access and Management

In [E88) and CRES92] we considered the problem of efficient multi-site database interoperation. We presented a new
Client-Server architecture for databases. Incremental computation and maintenance of dowloaded views were introduced and
implemented.

During 1989-1990 we finished a prototype system. ADMS. that provides Incremental Gateway Access to Multiple
Heterogeneous Database Servers. The system's architecture allows inter-database and/or private database queries. The most
attractive feature of ADMS± is its efficiency with respect to the multidatabase management and the ability to construct mixed-
breed relational views. The user can combine private and subsets of shared data in relational views derived from shared and
private relations. This gives him the autonomy of running local SQL queries and the speed of accessing local small subsets
tailored to his applications. Access to the external servers is only to obtain new data and/or for receiving incrementally the
changes done shared data. The key concept in the system is the incremental maintenance algorithms offer are the foundations of
the enhanced performance in such heterogeneous systems.

ADMS_'s enhanced architecture offers several advantages. First, the gateway software uses incremental access methods

[RES92] for the interactions between the cooperating clients and servers. This reduces the number of data transfers between the
workstations and the servers caused by continuous and repetitive interactions with different parts of the database or databases.
Second, the local workstation environment, acting as a cache manager, becomes less dependent on the load of the servers
because cached data is accessed from the local disks. Finally, most of the query processing and 1/0 is offloaded to powerful
workstations which run in parallel. Only updates are done on the servers for maintaining consistency. However, since the ratio
of updates over reads is relatively small, most of the I/O is done in parallel thus significantly increasing the T/O throughpuL This
was shown by extensive and thorough simulations comparing several Client-Server Database Architectures [DR92] (see also
below).

Distributed and Pipelined Multiple Joins

In distributed query processing, the semijoin has been used as an effective operator in reducing data transmission and pro-
cessing over a network. The semijoin is a mechanism that allowsforward size reduction of relations and/or intermediate results

used and/or generated during the processing of a distributed query. In [RK91], we propose a new relational operator, 2-way
semijoin, which enhances the semijoin with backward size reduction capability for more cost-effective query processing. We
then introduce a Pipeline N-way Join algorithm for caching the reduced relations residing on N sites. The main advantage of this
algorithm is that it eliminates the need of transferring and storing intermediate results among the sites. A worst test case

Final Report Grant# AFOSR-89-0303 Page Ii

experiment is included and shows that at least 50% of the I/O is saved from the final phase of the join by eliminating intermedi-

ate results.

Multiprocessor Parallel Joins

We studied parallel execution of relational joins. Using the notion of the Parallel Processing Tree (PPT) that models both

the parallel and the sequential aspects of the computation, we discuss in (TR89a] the optimization of parallel N-join queries on

general purpose multiprocessors. The optimization is based on two basic steps: First, a cost model is derived for the PPT. and

then a set of PPT operations are defined and their properties are investigated. We adopted an operational approach by iteratively

applying PPT operations to transform the initial PPT into a canonical one which is suitable for parallel execution. The efficiency

and effectiveness of this approach were justified by experiments. The application value of this optimization strategy lies in its

general performance, efficiency, simplicity, generality, and flexibility.

To improve the access of data, a new index method, PP-tree, for multiprocessor environments is presented in ITR89bI. A
PB-tree has a B-tree like structure but with a less rigid global structure that makes it easier to maintain in a multiprocessor

environment. Each PB-tree node is formed by N subnodes, where N is the number of secondary storage devices across which

the indexed relation is stored. The PB-tree has a novel node splitting method based on k pivot keys which are used by each pro-

cessor to communicate with others. The smaller the k value, the lesser the maintenance cost is. The lowered maintenance cost is

at the expense of the average index access path length. We show that moderately small pivot numbers can achieve low com-

munication and maintenance cost with a rather insignificant loss in the average access path length. We compare the performance

of the PB-tree with that using N conventional B-tree indexes each of which corresponds to a fragment of a relation partitioned on
N disks. The overall performance benefits on a combined access and maintenance cost for the PB-tree over the conventional B-

trees range between 22% and 34%.

Finally, the problem of dynamic processor allocation (DPA) at the query level in accordance with a general execution

model and a general cost model is analyzed in [TR89c). Two characterization parameters, accumulated processor number and

execution cost, are used to measure the performance of a dynamic processor allocation strategy. The goal is to maximize the

average parallelism by minimizing the execution cost with a given accumulated processor number. A problem variation called

complete processor allocation (CPA) problem is solved in linear sequential time. The CPA has an enlarged solution domain by

assuming portions of processors allocated to operations are real numbers. By discretizing the number of processors assigned to

each operation, we obtain a DPA strategy called triangle processor allocation (TPA). The performance of the TPA is justified

and compared with other DPA strategies by experiments on sequences of random SPlJqueries. The theoretical as well as exper-

imental results show that both service demands of the operations and the execution plan structure play the key role in allocating

processors to achieve high average parallelism.

Enhanced Client-Server Architecture of Databases

In [DR92] and [DR931, we examine several client-server database architectures, namely: Client-Server (CS), RAD-

UNIFY type of DBMS (RU) and Enhanced Client-Server (ECS). Their specific functional components and design rationales are

discussed. We use three simulation models to compare their performance under different job workloads. Our simulation results

show that the RU almost always performs slightly better than the CS especially under light workloads and that ECS offers

significant performance improvement over both CS and RU. Under reasonable update rates, the ECS over CS (or RU) perfor-

mance ratio is almost proportional to the number of participating clients (for less than 32 clients). We also examine the impact

of certain key parameters on the performance of the three architectures and finally show that ECS is scalable while the other two

are not.

2.4. Time and Version Management

The database literature contains numerous papers on modeling time in relational database systems. In the past, the focus

has been on data model issues and only recently has efficient implementation been addressed. In (ThMR91], we present an

Final Report Grant# AFOSR-89-0303 Page 12

